Quais fatores influenciam a resistência elétrica?

Como mostramos em outro artigo, a corrente elétrica consiste no movimento ordenado de elétrons é formada quando há uma diferença de potencial (ddp) em um fio condutor. E esse movimento no condutor fica sujeito a uma oposição que é conhecida como resistência elétrica.

No inicio do século 19, o físico alemão

Georg Simon Ohm

(1787-1854) descobriu duas leis que determinam a resistência elétrica dos condutores. Essas leis, em alguns casos, também valem para os semicondutores e os isolantes.

A primeira lei de Ohm

Considere um fio feito de material condutor. As extremidades desse fio, são ligadas aos pólos de uma pilha, como mostra a figura abaixo. Desse modo, a pilha estabelece uma diferença de potencial no fio condutor e, consequentemente, uma corrente elétrica. Para se determinar o valor da corrente elétrica, coloca-se em série no circuito um amperímetro e, em paralelo, um voltímetro que permititrá a leitura da tensão. A montagem do circuito está ilustrada na figura abaixo:

  • Quais fatores influenciam a resistência elétrica?

Com o circuito montado e funcionando, fazemos as medições de tensão e corrente através dos aparelhos instalados. Agora imagine que a diferença de potencial da pilha seja dobrada (podemos fazer isso ligando uma segunda pilha em série com a primeira). Como resultado dessa alteração, o voltímetro marcará o dobro da tensão anterior, e o amperímetro marcará o dobro de corrente elétrica. Se triplicarmos a diferença de potencial, triplicaremos a corrente elétrica. Isso quer dizer que a razão entre a diferença de potencial e a corrente elétrica tem um valor constante. Essa constante é simbolizada pela letra R.

Se colocarmos a corrente elétrica (i) em evidência, podemos observar que, quanto maior o valor de R, menor será a corrente elétrica. Essa constante mostra a resistência que o material oferece à passagem de corrente elétrica.

A primeira lei de Ohm estabelece que a razão entre a diferença de potencial e a corrente elétrica em um condutor é igual a resistência elétrica desse condutor. Vale salientar que a explicação foi desenvolvida tendo como base um condutor de resistência constante. É por isso que condutores desse tipo são chmados de condutores ôhmicos.

A unidade de resistência elétrica no Sistema Internacional está exposta no quadro a seguir.

A segunda lei de Ohm

A primeira lei de Ohm nos apresentou uma nova grandeza física, a resistência elétrica. A segunda lei de Ohm nos dirá de que fatores influenciam a resistência elétrica. De acordo com a segunda lei, a resistência depende da geometria do condutor (espessura e comprimento) e do material de que ele é feito. A resistência é diretamente proporcional ao comprimento do condutor e inversamente proporcional a área de secção (a espessura do condutor). Observe a figura abaixo.

  • Quais fatores influenciam a resistência elétrica?

A figura apresenta a segunda lei de Ohm, onde L representa o comprimento do condutor e A é a área de sua secção reta. Essa equação mostra que se aumentarmos o comprimento do fio, aumentaremos a resistência elétrica, e que o aumento da área resultará na diminuição da resistência elétrica.

O ρ é a resistividade do condutor, que depende do material de que ele é feito e da sua temperatura.

A resistividade elétrica é uma propriedade que define o quanto um material opõe-se à passagem de corrente elétrica, de forma que:quanto maior for a resistividade elétrica de um material, mais difícil será a passagem da corrente elétrica, e quanto menor a resistividade, mais ele permitirá a passagem da corrente elétrica. Para entender a resistividade elétrica, vejamos primeiro o conceito de resistência elétrica.

Quando um material é submetido a uma diferença de potencial, é estabelecida uma corrente elétrica entre os seus terminais, que é caracterizada pelo movimento das cargas elétricas livres em seu interior. Durante esse movimento desordenado das cargas, vários elétrons chocam-se uns com os outros e com os átomos que constituem o condutor (normalmente algum metal), o que dificulta a passagem da corrente elétrica. Essa dificuldade é denominada resistência elétrica.

A resistência elétrica depende das características e do material de que é feito o condutor. Observe a figura:

Quais fatores influenciam a resistência elétrica?

Condutor de eletricidade com área de seção transversal A e comprimento L

  • Quanto maior for a área de seção transversal A, menor será a resistência do condutor, uma vez que é mais fácil a passagem das cargas elétricas por uma área maior;

  • Quanto maior for o comprimento L do condutor, maior será a resistência, pois maior será o espaço que as cargas elétricas percorrerão, aumentando a probabilidade de colisões internas e perda de energia;

  • A natureza elétrica do material também influencia na resistência: quanto maior for a quantidade de elétrons livres, maior será a facilidade de a corrente elétrica ser estabelecida. Essa característica específica de cada material é a resistividade elétrica.

Não pare agora... Tem mais depois da publicidade ;)

Conhecendo essas relações de proporcionalidade entre a resistência e as características do condutor, podemos obter uma equação para a resistência elétrica:

R = ρ L
     A

Sendo que:

ρ é a resistividade elétrica específica do material;
L é o comprimento do condutor;
A é a área de seção transversal do condutor.

A equação acima pode ser reescrita para que obtenhamos matematicamente a resistividade elétrica do material:

ρ = A.R
     L

A unidade de medida da resistividade elétrica no SI é Ω.m. Veja na tabela a seguir a resistividade de alguns materiais:

Material

Resistividade ( Ω.m)

Prata

1,6 . 10-8

Cobre

1,7.10-8

Ouro

2,4. 10-8

Carbono

3,5. 10-5

Silício

2,5 . 102

Vidro

De 1010 a 1014

Borracha

1013

Podemos observar que os materiais que possuem menor resistividade elétrica são os metais. Sendo assim, os condutores metálicos são os que apresentam menor resistência elétrica e, por isso, os mais indicados a serem utilizados nas linhas de transmissão de eletricidade.

O valor da resistividade nem sempre é constante, pois ela aumenta com a temperatura. Isso ocorre porque o calor causa aumento na agitação molecular, ocasionando colisões no interior do condutor, o que aumenta a resistência do material.

A relação entre a temperatura e a resistividade elétrica é dada pela expressão:

ρ = ρ0 [ 1+ α(t – t0)]

O ρ0 é a resistividade do material a uma temperatura inicial t0, que normalmente é 20ºC.


Por Mariane Mendes
Graduada em Física

Quais são os fatores que influenciam a resistência elétrica?

A resistência elétrica de um condutor é influenciada pela sua resistividade, comprimento e área transversal. Calculamos a resistência elétrica por meio da primeria lei de Ohm (R=Ui ou U=R⋅i) e da segunda lei de Ohm ( R=ρ⋅LA).

Qual fator não influencia na resistência elétrica?

Idealmente, o valor da corrente não afeta a resistência em um material.

Quais variáveis afetam a resistência do fio?

Em um fio ou cabo, a espessura e o comprimento também desempenham um papel. A resistência aumenta com o comprimento, pois há mais átomos para entrar, mas diminui com a espessura, como em um fio mais espesso há mais elétrons disponíveis para carregar a corrente. Também aumenta com o aumento da temperatura.

Quais são os tipos de resistências elétricas?

Tipos de Resistência elétrica:.
Resistência Elétrica Aletada para aquecimento de ar;.
Resistência elétrica tipo tubular;.
Resistência Elétrica tipo Tubular imersão;.
Resistência Elétrica Tubular sobre borda;.
Resistência Elétrica para estufas e fornos;.
Resistência Elétrica para bancos de aquecimento;.