Porque o uso excessivo de fertilizantes agrícolas pode alterar o ciclo do nitrogênio explique?

Diego Freire | Agência FAPESP – Os fertilizantes nitrogenados, que contêm o elemento nitrogênio num formato assimilável pelos vegetais, são importantes para a formação das proteínas indispensáveis à saúde do caule e da raiz das plantas, mas seu uso indiscriminado aumenta as emissões de óxido nitroso, um potente causador do efeito estufa. O equilíbrio dessa relação será um dos temas estudados na School of Advanced Science on nitrogen cycling, environmental sustainability and climate change, que o Centro de Energia Nuclear na Agricultura (Cena) da Universidade de São Paulo (USP) e o Inter-American Institute for Global Change Research realizam de 31 de julho a 10 de agosto, em São Pedro (SP).

O evento, que tem apoio da FAPESP na modalidade Escola São Paulo de Ciência Avançada (ESPCA), é promovido em parceria com o Instituto Nacional de Pesquisas Espaciais (Inpe), a Universidade de Brasília (UnB) e a International Nitrogen Initiative (INI) e evidencia o importante papel que o nitrogênio exerce na vida no planeta, especialmente na produção de alimentos.

“Entre os diversos setores para os quais o nitrogênio é importante está a agricultura, que é também o que mais interfere no ciclo do elemento na Terra em função do amplo uso de fertilizantes. Mas, como uma verdadeira commodity, o nitrogênio é ofertado de maneira desigual entre países ricos e pobres, sendo usado em grandes quantidades por alguns, causando prejuízos ao meio ambiente, e, por outro lado, estando escasso em outras partes do mundo, atrasando o desenvolvimento da produção de alimentos de diversas nações. A ciência por trás de todo esse processo e as soluções científicas para o uso sustentável do nitrogênio serão abordadas ao longo da programação da ESPCA”, disse Luiz Antonio Martinelli, coordenador do evento.

Embora abundante no meio ambiente em sua forma molecular (N2), compondo 78% do ar atmosférico, o nitrogênio não é diretamente absorvido pelas plantas, que precisam da ajuda de bactérias para tal. Elas transformam o N2 da atmosfera em nitrogênio reativo, permitindo que ele seja utilizado pelos vegetais. Mas o excesso do elemento provoca, além de danos à própria planta, problemas de contaminação do solo e dos ecossistemas aquáticos e aumenta a emissão de óxido nitroso, o que agrava o efeito estufa.

“Portanto, o desafio consiste em fornecer nitrogênio de uma maneira que aumente e sustente a produção de alimentos sem danos para o meio ambiente. Isso é especialmente importante porque o uso inadequado de fertilizantes nitrogenados contribui para a intensificação das mudanças climáticas e traz prejuízos diretos às plantas”, explica Martinelli.

Quando Ppesente em quantidades que vão além da capacidade de assimilação das plantas, o nitrogênio fixado no solo pode limitar seu crescimento, prejudicando toda a cultura. Uma alternativa ao uso excessivo de fertilizantes nitrogenados, diz o pesquisador, é a rotação de culturas, “alternando-se plantas fixadoras de nitrogênio – aquelas que possuem bactérias e outros organismos fixadores associados às suas raízes, como as leguminosas (feijão e soja, por exemplo) – com outras que não têm essa capacidade natural”.

A rotatividade favorece a fixação de nitrogênio em quantidades mais seguras que a utilização dos fertilizantes, fornecendo nutrientes compatíveis com a capacidade de assimilação das plantas, beneficiando seu desenvolvimento e reduzindo a contaminação do solo e da água.

Escola

O objetivo da ESPCA é proporcionar a alunos de pós-graduação do Brasil e de outros países conhecimentos sobre o ciclo do nitrogênio e tópicos relacionados à sua disponibilidade, aos processos naturais e antrópicos e a questões socioeconômicas e de políticas públicas para o setor.

Entre os temas abordados pela programação estão os desafios e oportunidades relacionados ao ciclo do nitrogênio, tratando da sua fixação biológica, dos seus ciclos geoquímicos e da modificação humana que tem sofrido; o uso do nitrogênio e suas consequências ambientais (pegada de nitrogênio, o uso futuro de fertilizantes nitrogenados, emissões de gases do efeito de estufa associadas ao uso de N, efeitos cascata); e o ciclo do nitrogênio sob diferentes estresses climáticos, ilustrados pelos biomas brasileiros da Amazônia, Cerrado e Caatinga.

Os participantes serão selecionados de acordo com o mérito da sua atuação acadêmica na área e poderão ter suas despesas de viagem e hospedagem custeadas. Mais informações sobre como se inscrever na seleção estão disponíveis em www.iai.int/?p=11889. As inscrições serão encerradas no dia 30 de maio, às 14h.

Dentre os ciclos biogeoquímicos, o do nitrogênio é o mais amplamente estudado. Confira um resumo e conheça sua importância

Se preferir, vá direto ao ponto

O nitrogênio é um elemento químico descoberto pelo médico e químico Daniel Rutherford que pertence ao segundo período da tabela periódica. Confira mais sobre como funciona seu ciclo e sua importância para o meio ambiente.

Qual é a importância do nitrogênio?

Esse elemento é conhecido por ser essencial para a existência de vida na Terra, já que é componente de todos os aminoácidos do nosso corpo, além das bases nitrogenadas (que constituem as moléculas de DNA e RNA). Aproximadamente 78% do ar que respiramos é composto pelo nitrogênio da atmosfera (N2), que é seu maior reservatório. Um dos motivos para isso é o N2 ser a forma inerte do nitrogênio, ou seja, ele é um gás que, em situações comuns, não é reativo. Assim, ele vem se acumulando na atmosfera desde a formação do planeta.

Apesar disso, poucos seres vivos têm capacidade de absorvê-lo em sua forma molecular (N2). Acontece que o nitrogênio, assim como o ferro e o enxofre, participa de um ciclo natural ao longo do qual sua estrutura química. Nesse processo, ele sofre transformações, servindo como base para outras reações e assim se tornando disponível para outros organismos. Por isso, o ciclo do nitrogênio (ou “ciclo do azoto”) é tão importante. Entenda as etapas do ciclo e como acontecem.

Porque o uso excessivo de fertilizantes agrícolas pode alterar o ciclo do nitrogênio explique?
Ciclo de Nitrogênio. Imagem modificada de Pedro Spoladore, baseada na imagem de Johann Dréo, via Wikimedia Commons sob a licença CC BY-SA 3.0

Outra alternativa para o uso de fertilizantes nitrogenados pode ser a alteração genética de algumas espécies vegetais. A partir de estudos de alteração genética, foi identificado um segmento cromossômico que provoca a interrupção do processo de nitrificação quando presente em raízes.

Os pesquisadores introduziram o segmento em exemplares de trigo. Eles perceberam que a inibição contribui para reduzir a contaminação do solo e de corpos hídricos com hidrogênio. Além disso, o processo reduz a necessidade de fertilizantes nos cultivos, já que as plantas terão maior concentração de nitrogênio em seu organismo.

De acordo com a pesquisa o consumo de agrotóxicos para a produção de trigo corresponde a 1/5 dos agrotóxicos consumidos no mundo. Assim, o estudo de alteração genética com agentes inibidores da nitrificação pode ser uma alternativa para reduzir o uso de fertilizantes.

ANAMMOX

A sigla em inglês (que significa oxidação anaeróbia de amônia) nomeia um processo biológico inovador de remoção de amônia de águas e gases.

Consiste em um atalho, visto que a amônia não precisaria ser nitrificada em nitrito e nitrato para que fosse denitrificada de volta para a forma de N2. Com o processo ANAMMOX, a amônia seria diretamente reconvertida em gás nitrogênio (N2). A primeira estação de grande escala foi instalada em 2002 na Holanda, e em 2012, já existiam 11 instalações em funcionamento.

Eficiente e sustentável, o processo ANAMMOX pode ser utilizado para remover amônia em efluentes em concentrações maiores até que 100 mg/l. Dentro dos reatores, bactérias nitrificantes e ANAMMOX coexistem, onde as primeiras transformam cerca de metade da amônia em nitretos (compostos químicos que possuem nitrogênio em sua composição), e as bactérias ANAMMOX agem transformando os nitretos e a amônia em gás nitrogênio.

A oxidação anaeróbica de amônia tem se demonstrado promissora, e já pode ser encontrada em processos industriais como tratamento de águas residuárias, de resíduos sólidos orgânicos, em indústrias alimentícias, de fertilizantes, dentre outras.

Porque o uso excessivo de fertilizantes agrícolas pode alterar o ciclo do nitrogênio?

A aplicação excessiva de fertilizantes nitrogenados na agricultura pode acarretar alterações no solo e na água pelo acúmulo de compostos nitrogenados, principalmente a forma mais oxidada, favorecendo a proliferação de algas e plantas aquáticas e alterando o ciclo do nitrogênio, representado no esquema.

Quais as consequências da aplicação excessiva de fertilizantes?

O uso em excesso ou com deficiência de fertilizantes deixa as plantas nutricionalmente mais vulneráveis a doenças. Por isso, o equilíbrio de nutrientes é fundamental para que a plantação cresça com maior resistência e qualidade. São muitos os nutridores necessários para o desenvolvimento sadio da lavoura.

Quais os problemas causados pelo uso de fertilizantes nitrogenados?

Elas transformam o N2 da atmosfera em nitrogênio reativo, permitindo que ele seja utilizado pelos vegetais. Mas o excesso do elemento provoca, além de danos à própria planta, problemas de contaminação do solo e dos ecossistemas aquáticos e aumenta a emissão de óxido nitroso, o que agrava o efeito estufa.

Quais os problemas encontrados com o uso de fertilizantes?

Entre os problemas estão: a degradação da qualidade do solo, a poluição das fontes de água e da atmosfera e aumento da resistência de pragas.