Quantas faces tem um poliedro convexo de faces triangulares?

A relação de Euler é uma fórmula matemática que relaciona os números de vértices, arestas e faces de um poliedro convexo. Essa relação é dada pela seguinte expressão:

V – A + F = 2

Onde V é o número de vértices, A é o número de arestas e F é o número de faces do poliedro.

Essa relação é válida para todo poliedro convexo, mas existem alguns poliedros não convexos para os quais ela também pode ser verificada. Dessa forma, dizemos que todo poliedro convexo é Euleriano (isso significa que para ele vale a relação de Euler), mas nem todo poliedro Euleriano é convexo.

Antes de prosseguir com exemplos e demais explicações, é bom relembrar o que é um poliedro convexo, pois a relação acima vale para todos eles.

Poliedros convexos

Um poliedro é chamado convexo quando o plano que contém cada face deixa todas as outras em um mesmo semiespaço. Na prática, não é necessário testar essa definição para todas as faces de um poliedro, mas apenas para aquelas que potencialmente possam classificá-lo como não convexo.

Por exemplo: O poliedro abaixo é não convexo. Para ter certeza disso, desenhamos uma parte de um plano que contém uma de suas faces. É evidente, escolhemos a face problemática para percebermos isso.

Quantas faces tem um poliedro convexo de faces triangulares?

Já na figura abaixo, um cubo, um exemplo de um poliedro convexo. Note que ele não possui “concavidades”, ou seja, nenhuma de suas faces esta “voltada para dentro” do poliedro.

Quantas faces tem um poliedro convexo de faces triangulares?

Contando os elementos de um poliedro

Não pare agora... Tem mais depois da publicidade ;)

Para verificar a validade da relação de Euler, escolheremos dois poliedros convexos e contaremos seus elementos. Depois disso, verificaremos se o número de vértices, arestas e faces realmente satisfazem a relação de Euler. Observe:

1 – Primeiramente, contaremos o número de faces, vértices e arestas da figura anterior (cubo).

Faces: 6

Arestas: 12

Vértices: 8

Agora, verificaremos a relação de Euler:

V – A + F = 8 – 12 + 6 = 14 – 12 = 2

Para o primeiro poliedro convexo, o cubo, a relação de Euler se verifica.

2 – Verificaremos agora a relação de Euler para a pirâmide quadrangular convexa.

Quantas faces tem um poliedro convexo de faces triangulares?

Faces: 5

Arestas: 8

Vértices: 5

V – A + F = 5 – 8 + 5 = 10 – 8 = 2

E a relação de Euler também se verifica para a pirâmide quadrangular convexa.

Exemplos

1 – Determine o número de arestas de um sólido geométrico que possui 10 vértices e 7 faces.

V – A + F = 2

10 – A + 7 = 2

– A = 2 – 7 – 10

– A = – 15

A = 15

O sólido possui 15 arestas.

2 – Determine o número de faces que possui um poliedro com 12 arestas e 6 vértices.

V – A + F = 2

6 – 12 + F = 2

F = 2 +12 – 6

F = 8

O número de faces desse poliedro é 8.

Os poliedros são sólidos geométricos limitados por um número finito de polígonos planos. Esses polígonos formam as faces do poliedro.

A intersecção de duas faces é chamada de aresta e o ponto comum de três ou mais arestas é chamado de vértice, conforme indicado na imagem abaixo.

Quantas faces tem um poliedro convexo de faces triangulares?

Poliedro convexo e não convexo

Os poliedros podem ser convexos ou não convexos. Se qualquer segmento de reta que liga dois pontos de um poliedro estiver totalmente contido nele, então ele será convexo.

Uma outra forma de identificar um poliedro convexo é verificar que qualquer reta não contida em nenhuma das face e nem paralela a elas, corta os planos das faces em, no máximo, dois pontos.

Quantas faces tem um poliedro convexo de faces triangulares?

Teorema de Euler

O Teorema ou Relação de Euler é válido para os poliedros convexos e para alguns poliedros não-convexos. Este teorema estabelece a seguinte relação entre o número de faces, vértices e arestas:

F + V = 2 + A ou V - A + F = 2

Onde,

F: número de faces
V: número de vértices
A: número de arestas

Os poliedros em que a relação de Euler é válida são chamados de eulerianos. É importante notar que todo poliedro convexo é euleriano, porém nem todo poliedro euleriano é convexo.

Exemplo

Um poliedro convexo é formado por exatamente 4 triângulos e 1 quadrado. Quantos vértices tem esse poliedro?

Solução

Primeiro precisamos definir a quantidade de faces e arestas. Como o poliedro possui 4 triângulos e 1 quadrado, então possui 5 faces.

Para encontrar o número de aresta podemos calcular o número total de lados e dividir o resultado por dois, visto que cada aresta é a intersecção de dois lados:

Agora que conhecemos o número de faces e arestas, podemos aplicar a relação de Euler, assim temos:

Portanto, este poliedro possui 5 vértices.

Conhece também Relação de Euler: vértices, faces e arestas.

Poliedros regulares

Os poliedros convexos são regulares quando suas faces são compostas por polígonos regulares e congruentes entre si. Além disso, o número de aresta que concorre em cada vértice é o mesmo.

Devemos lembrar que os polígonos regulares são aqueles que possuem todos os lados e ângulos congruentes, ou seja, com mesma medida.

Existem apenas cinco poliedros regulares convexos, que são também chamados de “Sólidos Platônicos” ou “Poliedros de Platão”. São eles: tetraedro, hexaedro (cubo), octaedro, dodecaedro, icosaedro.

  • Tetraedro: sólido geométrico formado por 4 vértices, 4 faces triangulares e 6 arestas.
  • Hexaedro: sólido geométrico formado por 8 vértices, 6 faces quadrangulares e 12 arestas.
  • Octaedro: sólido geométrico formado por 6 vértices, 8 faces triangulares e 12 arestas.
  • Dodecaedro: sólido geométrico formado por 20 vértices, 12 faces pentagonais e 30 arestas.
  • Icosaedro: sólido geométrico formado por 12 vértices, 20 faces triangulares e 30 arestas.

Quantas faces tem um poliedro convexo de faces triangulares?

Prismas

Os prismas são sólidos geométricos que apresentam duas bases formadas por polígonos congruentes e localizados em planos paralelos. Suas faces laterais são paralelogramos ou retângulos.

De acordo com a inclinação das arestas laterais em relação a base, os prismas são classificados em retos ou oblíquos.

As faces laterais dos prismas retos são retângulos, enquanto dos prismas oblíquos são paralelogramos, conforme imagem abaixo:

Quantas faces tem um poliedro convexo de faces triangulares?

Pirâmide

As pirâmides são sólidos geométricos formados por uma base poligonal e um vértice (vértice da pirâmide) que une todas as faces laterais triangulares.

O número de lados do polígono da base corresponde ao número de faces laterais da pirâmide.

Quantas faces tem um poliedro convexo de faces triangulares?

Saiba mais sobre o tema:

  • Volume da Pirâmide
  • Geometria Espacial
  • Formas Geométricas
  • Sólidos Geométricos
  • Pirâmide
  • Volume do Prisma

Curiosidade

Ao estudar os poliedros regulares, o filósofo e matemático grego Platão relacionou cada um deles com os elementos da natureza: tetraedro (fogo), hexaedro (terra), octaedro (ar), dodecaedro (universo) e icosaedro (água).

Exercícios Resolvidos

1) Enem - 2018

Minecraft é um jogo virtual que pode auxiliar no desenvolvimento de conhecimentos relacionados a espaço e forma. É possível criar casas, edifícios, monumentos e até naves espaciais, tudo em escala real, através do empilhamento de cubinhos.

Um jogador deseja construir um cubo com dimensões 4 x 4 x 4. Ele já empilhou alguns dos cubinhos necessários, conforme a figura.

Quantas faces tem um poliedro convexo de faces triangulares?

Os cubinhos que ainda faltam empilhar para finalizar a construção do cubo, juntos, formam uma peça única, capaz de completar a tarefa.

O formato da peça capaz de completar o cubo 4 x 4 x 4 é

Quantas faces tem um poliedro convexo de faces triangulares?

Ver Resposta

Para descobrir qual figura se encaixa perfeitamente para formar o cubo 4 x 4 x 4 precisamos contar quantos quadrados faltam.

Observe que as duas camadas de baixo estão completas, portanto só iremos incluir mais cubinhos na duas últimas camadas.

Na imagem abaixo, assinalamos em azul os cubinhos que são necessários para que o cubo fique completo.

Quantas faces tem um poliedro convexo de faces triangulares?

Observando os cubinhos assinalados em azul, vemos que a peça única que completa o cubo é igual a da primeira alternativa.

Alternativa: a)

2) Enem - 2017

Uma rede hoteleira dispõe de cabanas simples na ilha de Gotland, na Suécia, conforme Figura 1. A estrutura de sustentação de cada uma dessas cabanas está representada na Figura 2. A ideia é permitir ao hóspede uma estada livre de tecnologia, mas conectada com a natureza.

Quantas faces tem um poliedro convexo de faces triangulares?

A forma geométrica da superfície cujas arestas estão representadas na Figura 2 é

a) tetraedro.
b) pirâmide retangular.
c) tronco de pirâmide retangular.
d) prisma quadrangular reto.
e) prisma triangular reto.

Ver Resposta

A figura 2 é composta por duas bases triangulares paralelas e as superfícies laterais são retângulos. Logo, esta figura é um prisma triangular reto.

Alternativa: e) prisma triangular reto.

Quantas faces tem um poliedro convexo de faces triangulares?

Bacharel em Meteorologia pela Universidade Federal do Rio de Janeiro (UFRJ) em 1992, Licenciada em Matemática pela Universidade Federal Fluminense (UFF) em 2006 e Pós-Graduada em Ensino de Física pela Universidade Cruzeiro do Sul em 2011.

Quantas faces tem um poliedro triangular?

Icosaedro: sólido geométrico formado por 12 vértices, 20 faces triangulares e 30 arestas.

Quantas faces tem o poliedro convexo?

Um poliedro convexo possui 20 faces e 12 vértices.

Quantos vértices tem um poliedro convexo com 4 faces triangulares?

Um poliedro com quatro faces é um tetraedro. Mas o tetraedro tem 6 arestas e não 9, e 4 vértices e não 7.

Qual poliedro tem 8 faces triangulares?

O octaedro possui 8 faces triangulares congruentes e 6 ângulos tetraédricos congruentes.